import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from IPython.display import HTML
from scipy.io import loadmat
from scipy.fft import fft, ifft
from scipy.signal import hilbert
from scipy.stats import norm
from mne.filter import filter_data
Chapter 26
Chapter 26
Analyzing Neural Time Series Data
Python code for Chapter 26 – converted from original Matlab by AE Studio (and ChatGPT)
Original Matlab code by Mike X Cohen
This code accompanies the book, titled “Analyzing Neural Time Series Data” (MIT Press).
Using the code without following the book may lead to confusion, incorrect data analyses, and misinterpretations of results.
Mike X Cohen and AE Studio assume no responsibility for inappropriate or incorrect use of this code.
Import necessary libraries
Figure 26.1
# Load sample EEG dataset
= loadmat('../data/sampleEEGdata.mat')['EEG'][0, 0]
EEG
# Names of the channels you want to synchronize
= 'P1'
channel1 = 'Pz'
channel2
# Create complex Morlet wavelet
= 5 # in Hz
center_freq = np.arange(-1, 1 + 1/EEG['srate'][0, 0], 1/EEG['srate'][0, 0]) # time for wavelet
time = np.exp(2 * 1j * np.pi * center_freq * time) * np.exp(-time**2 / (2 * (4 / (2 * np.pi * center_freq))**2)) / center_freq
wavelet = (len(time) - 1) // 2
half_of_wavelet_size
# FFT parameters
= len(time)
n_wavelet = EEG['pnts'][0, 0]
n_data = n_wavelet + n_data - 1
n_convolution
# FFT of wavelet
= fft(wavelet, n_convolution)
fft_wavelet
# Initialize output time-frequency data
= np.zeros((2, n_data))
phase_data = np.zeros((2, n_data))
real_data
# Find channel indices
= [EEG['chanlocs'][0]['labels']==channel1, EEG['chanlocs'][0]['labels']==channel2]
chanidx
# Run convolution and extract filtered signal (real part) and phase
for chani in range(2):
= fft(np.squeeze(EEG['data'][chanidx[chani], :, 0]), n_convolution)
fft_data = ifft(fft_wavelet * fft_data, n_convolution) * np.sqrt(4 / (2 * np.pi * center_freq))
convolution_result_fft = convolution_result_fft[half_of_wavelet_size:-half_of_wavelet_size]
convolution_result_fft
# Collect real and phase data
= np.angle(convolution_result_fft)
phase_data[chani, :] = np.real(convolution_result_fft)
real_data[chani, :]
# Define the update function for the animation
def update(ti):
# Update filtered signals
'times'][0, :ti], real_data[0, :ti])
filterplotH1.set_data(EEG['times'][0, :ti], real_data[1, :ti])
filterplotH2.set_data(EEG[
# Update cartesian plot of phase angles
'times'][0, :ti], phase_data[0, :ti])
phaseanglesH1.set_data(EEG['times'][0, :ti], phase_data[1, :ti])
phaseanglesH2.set_data(EEG[
# Update cartesian plot of phase angles differences
'times'][0, :ti], phase_data[0, :ti] - phase_data[1, :ti])
phaseanglesDiffH1.set_data(EEG['times'][0, :ti], real_data[0, :ti] - real_data[1, :ti])
filterplotDiffH1.set_data(EEG[
# Update polar plot of phase angles
ax1.clear()0, :ti], 2), np.tile([0, 1], ti), 'b')
ax1.plot(np.tile(phase_data[1, :ti], 2), np.tile([0, 1], ti), 'm')
ax1.plot(np.tile(phase_data[
# Update polar plot of phase angle differences
ax2.clear()1, :ti] - phase_data[0, :ti], 2), np.tile([0, 1], ti), 'k')
ax2.plot(np.tile(phase_data[
return filterplotH1, filterplotH2, phaseanglesH1, phaseanglesH2, phaseanglesDiffH1, filterplotDiffH1, ax1, ax2
# Create figure and axes
= plt.figure(figsize=(12, 8))
fig = fig.add_gridspec(3, 2)
gs = fig.add_subplot(gs[2, 0], polar=True)
ax1 = fig.add_subplot(gs[2, 1], polar=True)
ax2 = fig.add_subplot(gs[0, 0])
ax3 = fig.add_subplot(gs[0, 1])
ax4 = fig.add_subplot(gs[1, 0])
ax5 = fig.add_subplot(gs[1, 1])
ax6 'Movie magic minimizes the mystery.')
plt.suptitle(
# Initial plot setup
= ax3.plot(EEG['times'][0], real_data[0, :], 'b')
filterplotH1, = ax3.plot(EEG['times'][0], real_data[1, :], 'm')
filterplotH2, 'times'][0][0], EEG['times'][0][-1]])
ax3.set_xlim([EEG[min(), real_data.max()])
ax3.set_ylim([real_data.'Time (ms)')
ax3.set_xlabel('Voltage (μV)')
ax3.set_ylabel(f'Filtered signal at {center_freq} Hz')
ax3.set_title(
= ax4.plot(EEG['times'][0], phase_data[0, :], 'b')
phaseanglesH1, = ax4.plot(EEG['times'][0], phase_data[1, :], 'm')
phaseanglesH2, 'times'][0][0], EEG['times'][0][-1]])
ax4.set_xlim([EEG[-np.pi * 1.1, np.pi * 1.1])
ax4.set_ylim([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
ax4.set_yticks(['Time (ms)')
ax4.set_xlabel('Phase angle (radian)')
ax4.set_ylabel('Phase angle time series')
ax4.set_title(
= ax5.plot(EEG['times'][0], real_data[0, :] - real_data[1, :], 'b')
filterplotDiffH1, 'times'][0][0], EEG['times'][0][-1]])
ax5.set_xlim([EEG[-10, 10])
ax5.set_ylim(['Time (ms)')
ax5.set_xlabel('Voltage (μV)')
ax5.set_ylabel(f'Filtered signal at {center_freq} Hz')
ax5.set_title(
= ax6.plot(EEG['times'][0], phase_data[0, :] - phase_data[1, :], 'b')
phaseanglesDiffH1, 'times'][0][0], EEG['times'][0][-1]])
ax6.set_xlim([EEG[-np.pi * 2.2, np.pi * 2.2])
ax6.set_ylim([-2*np.pi, -3*np.pi/2, -np.pi, -np.pi/2, 0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])
ax6.set_yticks(['Time (ms)')
ax6.set_xlabel('Phase angle (radian)')
ax6.set_ylabel('Phase angle time series')
ax6.set_title(
# Create the animation
= FuncAnimation(fig, update, frames=np.arange(0, EEG['pnts'][0][0], 10), interval=100, blit=False)
ani
# Display the animation in the Jupyter notebook
HTML(ani.to_html5_video())
Figure 26.2
= plt.subplots(2, 2, subplot_kw=dict(polar=True))
fig, axs
# Plot phase synchronization for the original data
0, 0].plot(np.tile(phase_data[1, :] - phase_data[0, :], 2), np.tile([0, 1], n_data), 'k')
axs[0, 0].set_title('Phase synchronization: {:.5f}'.format(np.abs(np.mean(np.exp(1j * (phase_data[1, :] - phase_data[0, :]))))))
axs[
# Generate new phase data with random phase offsets and plot
for i in range(1, 4):
= phase_data.copy()
new_phase_data 0, :] += np.random.rand() * np.pi # add random phase offset
new_phase_data[// 2, i % 2].plot(np.tile(new_phase_data[1, :] - new_phase_data[0, :], 2), np.tile([0, 1], n_data), 'k')
axs[i // 2, i % 2].set_title('Phase synchronization: {:.5f}'.format(np.abs(np.mean(np.exp(1j * (new_phase_data[1, :] - new_phase_data[0, :]))))))
axs[i
plt.tight_layout() plt.show()
Figure 26.3
Note: see commented line “time_window_idx…” below for panels C and D
# Define channels and frequencies
= 'Fz'
channel1 = 'O1'
channel2
= np.logspace(np.log10(4), np.log10(30), 15) # 4-30 Hz in 15 steps
freqs2use = np.arange(-400, 820, 20) # Time points to save
times2save = np.linspace(1.5, 3, len(freqs2use)) # Number of cycles on either end of the center point
timewindow = [-400, -200]
baselinetm
# Wavelet and FFT parameters
= np.arange(-1, 1 + 1/EEG['srate'][0][0], 1/EEG['srate'][0][0])
time = (len(time) - 1) // 2
half_wavelet = np.logspace(np.log10(4), np.log10(8), len(freqs2use))
num_cycles = len(time)
n_wavelet = EEG['pnts'][0][0] * EEG['trials'][0][0]
n_data = n_wavelet + n_data - 1
n_convolution
# Time in indices
= [np.argmin(np.abs(EEG['times'][0] - t)) for t in times2save]
times2saveidx = [np.argmin(np.abs(times2save - bt)) for bt in baselinetm]
baselineidx
# Find channel indices
= [EEG['chanlocs'][0]['labels']==channel1, EEG['chanlocs'][0]['labels']==channel2]
chanidx
# Initialize ISPC matrix
= np.zeros((len(freqs2use), len(times2save)))
ispc = np.zeros((len(freqs2use), len(times2save)))
ps
# Data FFTs
= fft(EEG['data'][chanidx[0], :, :].flatten('F'), n_convolution)
data_fft1 = fft(EEG['data'][chanidx[1], :, :].flatten('F'), n_convolution)
data_fft2
# Loop over frequencies
for fi, freq in enumerate(freqs2use):
# Create wavelet and take FFT
= num_cycles[fi] / (2 * np.pi * freq)
s = fft(np.exp(2 * 1j * np.pi * freq * time) * np.exp(-time**2 / (2 * (s**2))), n_convolution)
wavelet_fft
# Phase angles from channel 1 via convolution
= ifft(wavelet_fft * data_fft1, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.angle(np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F'))
phase_sig1
# Phase angles from channel 2 via convolution
= ifft(wavelet_fft * data_fft2, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.angle(np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F'))
phase_sig2
# Phase angle differences
= phase_sig1 - phase_sig2
phase_diffs
= np.abs(np.mean(np.exp(1j * phase_diffs[times2saveidx, :]), axis=1))
ps[fi, :]
# Define time window in indices for each frequency
= np.round((1000 / freq) * timewindow[fi] / (1000 / EEG['srate'][0][0])).astype(int)
time_window_idx # time_window_idx = np.round(300 / (1000/EEG['srate'][0][0])) # set 300 to 100 for figure 3c/d
# Compute ITPC over trials within the time window
for ti, time_idx in enumerate(times2saveidx):
= np.abs(np.mean(np.exp(1j * phase_diffs[time_idx - time_window_idx:time_idx + time_window_idx + 1, :]), axis=0))
phasesynch
= np.mean(phasesynch)
ispc[fi, ti]
# Plotting
plt.figure()- np.mean(ispc[:, baselineidx[0]:baselineidx[1]+1], axis=1)[:, None], 20, cmap='viridis', extend='both')
plt.contourf(times2save, freqs2use, ispc 'log')
plt.yscale(round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
plt.yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
plt.gca().set_yticklabels(np.'Time (ms)')
plt.xlabel('Frequency (Hz)')
plt.ylabel(
plt.show()
plt.figure()1000 / freqs2use) * timewindow * 2, 'o-', markerfacecolor='k', label='variable windows')
plt.plot(freqs2use, (1000 / freqs2use) * timewindow[0] * 2, 'ro-', markerfacecolor='m', label='fixed 3*f window')
plt.plot(freqs2use, ('Window width (ms)')
plt.ylabel('Frequency (Hz)')
plt.xlabel(
plt.legend() plt.show()
Figure 26.4
=(10, 8))
plt.figure(figsize
# Plot phase differences over time for the first 8 trials
for i in range(8):
8, 1, i + 1)
plt.subplot(200, i] - phase_sig2[:200, i])
plt.plot(phase_sig1[:0, 200])
plt.xlim([
plt.tight_layout()
plt.show()
# Plot phase angle differences over time for the first trial in polar coordinates
=(10, 4))
plt.figure(figsize121, projection='polar')
plt.subplot(200, 0] - phase_sig2[:200, 0], 2), np.tile([0, 1], 200), 'k')
plt.plot(np.tile(phase_sig1[:'Phase angle differences over time')
plt.title(
# Plot phase angle differences over trials at a specific time point in polar coordinates
122, projection='polar')
plt.subplot(99, :8] - phase_sig2[99, :8], (2, 1)), np.tile([0, 1], (8, 1)).T, 'k')
plt.plot(np.tile(phase_sig1['Phase angle differences over trials')
plt.title(
plt.tight_layout() plt.show()
Figure 26.5
# Plotting
=(8, 6))
plt.figure(figsize- np.mean(ps[:, baselineidx[0]:baselineidx[1]+1], axis=1, keepdims=True), 20, cmap='viridis', extend='both')
plt.contourf(times2save, freqs2use, ps 'log')
plt.yscale(round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
plt.yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
plt.gca().set_yticklabels(np.-300, 800])
plt.xlim(['Time (ms)')
plt.xlabel('Frequency (Hz)')
plt.ylabel( plt.show()
Figure 26.6
# Time to use for analysis
= 300 # ms
time2use = 50 # Number of iterations for random sampling
niterations
# Initialize
= np.zeros((len(freqs2use), EEG['trials'][0][0]))
ispcByNandF = np.argmin(np.abs(times2save - time2use))
time2useidx
# Data FFTs
= fft(EEG['data'][chanidx[0], :, :].flatten('F'), n_convolution)
data_fft1 = fft(EEG['data'][chanidx[1], :, :].flatten('F'), n_convolution)
data_fft2
for fi, freq in enumerate(freqs2use):
# Create wavelet and take FFT
= num_cycles[fi] / (2 * np.pi * freq)
s = fft(np.exp(2 * 1j * np.pi * freq * time) * np.exp(-time**2 / (2 * (s**2))), n_convolution)
wavelet_fft
# Phase angles from channel 1 via convolution
= ifft(wavelet_fft * data_fft1, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.angle(np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F'))
phase_sig1
# Phase angles from channel 2 via convolution
= ifft(wavelet_fft * data_fft2, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.angle(np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F'))
phase_sig2
# Phase angle differences
= phase_sig1 - phase_sig2
phase_diffs
# Compute ISPC for different numbers of trials
for n in range(EEG['trials'][0][0]):
# Multiple iterations to select different random sets of trials
for iteri in range(niterations):
= np.random.choice(EEG['trials'][0][0], n+1, replace=False)
trials2use # Correctly index phase_diffs with trials2use
+= np.mean(np.abs(np.mean(np.exp(1j * phase_diffs[times2saveidx[time2useidx] - time_window_idx:times2saveidx[time2useidx] + time_window_idx + 1, trials2use]), axis=1)))
ispcByNandF[fi, n]
# Plotting
=(10, 6))
plt.figure(figsizerange(1, EEG['trials'][0][0] + 1), ispcByNandF.T/niterations)
plt.plot(0, 100])
plt.xlim([0.1, 1])
plt.ylim(['Number of trials')
plt.xlabel('ISPC')
plt.ylabel('ISPC as a function of number of trials')
plt.title( plt.show()
Figure 26.7
# Initialize
= np.zeros((2, EEG['pnts'][0][0], EEG['trials'][0][0]))
data4test = np.zeros((2, EEG['pnts'][0][0], EEG['trials'][0][0]))
data4power
= 0.00001
amp_mod
for triali in range(EEG['trials'][0][0]):
# Each trial is a random channel and trial
= EEG['data'][chanidx[0], :, triali].astype(float)
trialdata1 = EEG['data'][chanidx[1], :, triali].astype(float)
trialdata2
# Band-pass filtered data
= filter_data(trialdata1, EEG['srate'][0][0], 10, 20)
trialdata1 = filter_data(trialdata2, EEG['srate'][0][0], 10, 20)
trialdata2
# Phase angle differences, with and without amplitude dampening
0, :, triali] = np.angle(hilbert(trialdata1)) - np.angle(hilbert(trialdata2))
data4test[1, :, triali] = np.angle(hilbert(trialdata1)) - np.angle(hilbert(trialdata2 * amp_mod))
data4test[
0, :, triali] = np.abs(hilbert(trialdata2))**2
data4power[1, :, triali] = np.abs(hilbert(trialdata2 * amp_mod))**2
data4power[
# Compute ITPC
= np.abs(np.mean(np.exp(1j * data4test[0, :, :]), axis=1))
ispc_nomod = np.abs(np.mean(np.exp(1j * data4test[1, :, :]), axis=1))
ispc_mod
# Compute power
= np.mean(data4power, axis=2)
power
# Plot
= plt.subplots(3, 1, figsize=(10, 8))
fig, axs
# Amplitude modulator
0].plot(EEG['times'][0], trialdata2[0, :])
axs[0].plot(EEG['times'][0], trialdata2[0, :] * amp_mod, 'r')
axs[0].set_xlim([EEG['times'][0][0], EEG['times'][0][-1]])
axs[0].set_title('Amplitude modulator')
axs[
# Example trials
1].plot(EEG['times'][0], data4test[0, :, 9])
axs[1].plot(EEG['times'][0], data4test[1, :, 9], 'r')
axs[1].set_xlim([EEG['times'][0][0], EEG['times'][0][-1]])
axs[1].set_yticks([-2 * np.pi, -np.pi, 0, np.pi, 2 * np.pi])
axs[1].set_title('Example trials')
axs[
# ICPS
2].plot(EEG['times'][0], ispc_mod, 'ro')
axs[2].plot(EEG['times'][0], ispc_nomod, 'b')
axs[= axs[2].twinx()
ax2 'times'][0], np.mean(data4power[0, :, :], axis=1), 'k')
ax2.plot(EEG[2].set_xlim([EEG['times'][0][0], EEG['times'][0][-1]])
axs[2].set_ylim([0, 0.4])
axs[2].set_xlabel('Time (ms)')
axs[2].set_ylabel('ICPS')
axs[2].set_title('ICPS')
axs[
plt.tight_layout()
plt.show()
# Power vs. ICPS
= plt.subplots(1, 2, figsize=(10, 4))
fig, axs
# Non-modulated power
0].plot(power[0, :], ispc_nomod, '.')
axs[0].set_xlabel('Power')
axs[0].set_ylabel('ICPS')
axs[0].set_title('Non-modulated power')
axs[
# Modulated power
1].plot(power[1, :], ispc_mod, '.')
axs[1].set_xlabel('Power')
axs[1].set_ylabel('ICPS')
axs[1].set_title('Modulated power')
axs[
plt.tight_layout() plt.show()
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Setting up band-pass filter from 10 - 20 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 10.00
- Lower transition bandwidth: 2.50 Hz (-6 dB cutoff frequency: 8.75 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 339 samples (1.324 s)
Figure 26.8
# Select channels
= 'Fz'
channel1 = 'O1'
channel2
# Wavelet and FFT parameters
= np.arange(-1, 1 + 1/EEG['srate'][0][0], 1/EEG['srate'][0][0])
time = (len(time) - 1) // 2
half_wavelet = len(time)
n_wavelet = EEG['pnts'][0][0] * EEG['trials'][0][0]
n_data = n_wavelet + n_data - 1
n_convolution
# Find channel indices
= [EEG['chanlocs'][0]['labels']==channel1, EEG['chanlocs'][0]['labels']==channel2]
chanidx
# Data FFTs
= fft(EEG['data'][chanidx[0], :, :].flatten('F'), n_convolution)
data_fft1 = fft(EEG['data'][chanidx[1], :, :].flatten('F'), n_convolution)
data_fft2
# Initialize spectral coherence matrix
= np.zeros((len(freqs2use), len(times2save)))
spectcoher
# Loop over frequencies
for fi, freq in enumerate(freqs2use):
# Create wavelet and take FFT
= num_cycles[fi] / (2 * np.pi * freq)
s = fft(np.exp(2 * 1j * np.pi * freq * time) * np.exp(-time**2 / (2 * (s**2))), n_convolution)
wavelet_fft
# Phase angles from channel 1 via convolution
= ifft(wavelet_fft * data_fft1, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F')
sig1
# Phase angles from channel 2 via convolution
= ifft(wavelet_fft * data_fft2, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F')
sig2
# Compute power and cross-spectral power
= np.mean(sig1 * np.conj(sig1), axis=1)
spec1 = np.mean(sig2 * np.conj(sig2), axis=1)
spec2 = np.abs(np.mean(sig1 * np.conj(sig2), axis=1))**2
specX
# Compute spectral coherence, using only requested time points
= np.abs(specX[times2saveidx]) / (np.abs(spec1[times2saveidx]) * np.abs(spec2[times2saveidx]))
spectcoher[fi, :]
# Plotting
= plt.subplots(1, 2, figsize=(12, 8))
fig, axs
# "Raw" spectral coherence
0].contourf(times2save, freqs2use, spectcoher, 20, cmap='viridis', extend='both')
axs[0].set_yscale('log')
axs[0].set_yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[0].set_yticklabels(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[0].set_xlabel('Time (ms)')
axs[0].set_ylabel('Frequency (Hz)')
axs[0].set_title('"Raw" spectral coherence')
axs[
# Baseline-subtracted spectral coherence
= np.array([np.argmin(np.abs(times2save - bt)) for bt in baselinetm])
baselineidx = spectcoher - np.mean(spectcoher[:, baselineidx[0]:baselineidx[1]+1], axis=1)[:, None]
spectcoher_baseline_subtracted 1].contourf(times2save, freqs2use, spectcoher_baseline_subtracted, 20, cmap='viridis', extend='both')
axs[1].set_yscale('log')
axs[1].set_yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[1].set_yticklabels(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[1].set_xlabel('Time (ms)')
axs[1].set_ylabel('Frequency (Hz)')
axs[1].set_title('Baseline-subtracted spectral coherence')
axs[
plt.tight_layout() plt.show()
Figure 26.9
# Number of "trials"
= 100
n
=(10, 10))
plt.figure(figsize
221, polar=True)
plt.subplot(= np.random.rand(n) * np.pi
phases 2), np.tile([0, 1], n), 'k')
plt.polar(np.tile(phases, = abs(np.mean(np.sign(np.imag(np.exp(1j * phases)))))
pli = abs(np.mean(np.exp(1j * phases)))
ispc f'PLI={pli:.3f}, ISPC={ispc:.3f}')
plt.title(
222, polar=True)
plt.subplot(= phases - np.pi / 2
phases 2), np.tile([0, 1], n), 'k')
plt.polar(np.tile(phases, = abs(np.mean(np.sign(np.imag(np.exp(1j * phases)))))
pli = abs(np.mean(np.exp(1j * phases)))
ispc f'PLI={pli:.3f}, ISPC={ispc:.3f}')
plt.title(
223, polar=True)
plt.subplot(= np.random.rand(n) / 2 + np.pi / 3 + 0.25
phases 2), np.tile([0, 1], n), 'k')
plt.polar(np.tile(phases, = abs(np.mean(np.sign(np.imag(np.exp(1j * phases)))))
pli = abs(np.mean(np.exp(1j * phases)))
ispc f'PLI={pli:.3f}, ISPC={ispc:.3f}')
plt.title(
224, polar=True)
plt.subplot(= phases - np.pi / 2
phases 2), np.tile([0, 1], n), 'k')
plt.polar(np.tile(phases, = abs(np.mean(np.sign(np.imag(np.exp(1j * phases)))))
pli = abs(np.mean(np.exp(1j * phases)))
ispc f'PLI={pli:.3f}, ISPC={ispc:.3f}')
plt.title(
plt.tight_layout() plt.show()
Figure 26.10
# Select channels
= 'Fz'
channel1 = 'O1'
channel2
# Specify some time-frequency parameters
= np.logspace(np.log10(4), np.log10(30), 15) # 4-30 Hz in 15 steps
freqs2use = np.arange(-400, 810, 10) # Time points to save
times2save = np.linspace(1.5, 3, len(freqs2use)) # Number of cycles on either end of the center point
timewindow = [-400, -200]
baselinetm
# Wavelet and FFT parameters
= np.arange(-1, 1 + 1/EEG['srate'][0][0], 1/EEG['srate'][0][0])
time = (len(time) - 1) // 2
half_wavelet = np.logspace(np.log10(4), np.log10(8), len(freqs2use))
num_cycles = len(time)
n_wavelet = EEG['pnts'][0][0] * EEG['trials'][0][0]
n_data = n_wavelet + n_data - 1
n_convolution
# Time in indices
= np.array([np.argmin(np.abs(EEG['times'][0] - t)) for t in times2save])
times2saveidx = np.array([np.argmin(np.abs(EEG['times'][0] - bt)) for bt in baselinetm]) # For the full temporal resolution data
baselineidxF = np.array([np.argmin(np.abs(times2save - bt)) for bt in baselinetm]) # For the temporally downsampled data
baselineidx
# Find channel indices
= [EEG['chanlocs'][0]['labels']==channel1, EEG['chanlocs'][0]['labels']==channel2]
chanidx
# Data FFTs
= fft(EEG['data'][chanidx[0], :, :].flatten('F'), n_convolution)
data_fft1 = fft(EEG['data'][chanidx[1], :, :].flatten('F'), n_convolution)
data_fft2
# Initialize
= np.zeros((len(freqs2use), EEG['pnts'][0][0]))
ispc = np.zeros((len(freqs2use), EEG['pnts'][0][0]))
pli = np.zeros((len(freqs2use), EEG['pnts'][0][0]))
wpli = np.zeros((len(freqs2use), EEG['pnts'][0][0]))
dwpli = np.zeros((len(freqs2use), len(times2save)))
dwpli_t = np.zeros((len(freqs2use), len(times2save)))
ispc_t
# Loop over frequencies
for fi, freq in enumerate(freqs2use):
# Create wavelet and take FFT
= num_cycles[fi] / (2 * np.pi * freq)
s = fft(np.exp(2 * 1j * np.pi * freq * time) * np.exp(-time**2 / (2 * (s**2))), n_convolution)
wavelet_fft
# Phase angles from channel 1 via convolution
= ifft(wavelet_fft * data_fft1, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F')
sig1
# Phase angles from channel 2 via convolution
= ifft(wavelet_fft * data_fft2, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F')
sig2
# Cross-spectral density
= sig1 * np.conj(sig2)
cdd
# ISPC
= np.abs(np.mean(np.exp(1j * np.angle(cdd)), axis=1))
ispc[fi, :]
# Take imaginary part of signal only
= np.imag(cdd)
cdi
# Phase-lag index
= np.abs(np.mean(np.sign(cdi), axis=1))
pli[fi, :]
# Weighted phase-lag index
= np.abs(np.mean(np.abs(cdi) * np.sign(cdi), axis=1)) / np.mean(np.abs(cdi), axis=1)
wpli[fi, :]
# Debiased weighted phase-lag index
= np.sum(cdi, axis=1)
imagsum = np.sum(np.abs(cdi), axis=1)
imagsumW = np.sum(cdi**2, axis=1)
debiasfactor = (imagsum**2 - debiasfactor) / (imagsumW**2 - debiasfactor)
dwpli[fi, :]
# Compute time window in indices for this frequency
= round((1000 / freq) * timewindow[fi] / (1000 / EEG['srate'][0][0]))
time_window_idx
for ti, t in enumerate(times2save):
# Debiased weighted phase-lag index over time
= np.sum(cdi[times2saveidx[ti] - time_window_idx:times2saveidx[ti] + time_window_idx, :], axis=0)
imagsum = np.sum(np.abs(cdi[times2saveidx[ti] - time_window_idx:times2saveidx[ti] + time_window_idx, :]), axis=0)
imagsumW = np.sum(cdi[times2saveidx[ti] - time_window_idx:times2saveidx[ti] + time_window_idx, :]**2, axis=0)
debiasfactor = np.mean((imagsum**2 - debiasfactor) / (imagsumW**2 - debiasfactor))
dwpli_t[fi, ti]
# Compute phase synchronization
= np.abs(np.mean(np.exp(1j * np.angle(cdd[times2saveidx[ti] - time_window_idx:times2saveidx[ti] + time_window_idx, :])), axis=0))
phasesynch = np.mean(phasesynch)
ispc_t[fi, ti]
# Baseline subtraction from all measures
= ispc - np.mean(ispc[:, baselineidxF[0]:baselineidxF[1]+1], axis=1)[:, None]
ispc = ispc_t - np.mean(ispc_t[:, baselineidx[0]:baselineidx[1]+1], axis=1)[:, None]
ispc_t = pli - np.mean(pli[:, baselineidxF[0]:baselineidxF[1]+1], axis=1)[:, None]
pli = dwpli - np.mean(dwpli[:, baselineidxF[0]:baselineidxF[1]+1], axis=1)[:, None]
dwpli = dwpli_t - np.mean(dwpli_t[:, baselineidx[0]:baselineidx[1]+1], axis=1)[:, None]
dwpli_t
# Plotting
= plt.subplots(2, 2, figsize=(12, 10))
fig, axs
# PLI over trials
0, 0].contourf(times2save, freqs2use, pli[:, times2saveidx], 40, cmap='viridis', extend='both')
axs[0, 0].set_yscale('log')
axs[0, 0].set_yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[0, 0].set_yticklabels(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[0, 0].set_title('PLI over trials')
axs[
# dWPLI over trials
0, 1].contourf(times2save, freqs2use, dwpli[:, times2saveidx], 40, cmap='viridis', extend='both')
axs[0, 1].set_yscale('log')
axs[0, 1].set_yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[0, 1].set_yticklabels(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[0, 1].set_title('dWPLI over trials')
axs[
# ICPS over time
1, 0].contourf(times2save, freqs2use, ispc_t, 40, cmap='viridis', extend='both')
axs[1, 0].set_yscale('log')
axs[1, 0].set_yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[1, 0].set_yticklabels(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[1, 0].set_title('ICPS over time')
axs[
# dWPLI over time
1, 1].contourf(times2save, freqs2use, dwpli_t, 40, cmap='viridis', extend='both')
axs[1, 1].set_yscale('log')
axs[1, 1].set_yticks(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[1, 1].set_yticklabels(np.round(np.logspace(np.log10(freqs2use[0]), np.log10(freqs2use[-1]), 8)))
axs[1, 1].set_title('dWPLI over time')
axs[
plt.tight_layout() plt.show()
Figure 26.11
# Trial to plot
= 10 - 1 # Any trial between 1 and 99 (book uses trial 10), subtrack 1 for Python indexing
trial2plot = 4.6 # Hz (book uses 4.6)
center_freq
# Create wavelet and take FFT
= 4.5 / (2 * np.pi * center_freq)
s = fft(np.exp(2 * 1j * np.pi * center_freq * time) * np.exp(-time**2 / (2 * (s**2))), n_convolution)
wavelet_fft
# Phase angles from channel 1 via convolution
= ifft(wavelet_fft * data_fft1, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F')
sig1
# Phase angles from channel 2 via convolution
= ifft(wavelet_fft * data_fft2, n_convolution)
convolution_result_fft = convolution_result_fft[half_wavelet:-half_wavelet]
convolution_result_fft = np.reshape(convolution_result_fft, (EEG['pnts'][0][0], EEG['trials'][0][0]), 'F')
sig2
# Cross-spectral density
= sig1 * np.conj(sig2)
xsd = np.imag(xsd)
xsdi
= np.zeros(EEG['pnts'][0][0])
dwpli = np.zeros(EEG['pnts'][0][0])
ispc
# Animation start and stop times
= np.argmin(np.abs(EEG['times'][0] - 0))
animate_start = np.argmin(np.abs(EEG['times'][0] - 1000))
animate_stop
# Time window in indices
= round(100 * timewindow[0] / (1000 / EEG['srate'][0][0]))
time_window_idx
# Initialize figure for animation with polar subplot
= plt.figure(figsize=(12, 6))
fig = plt.subplot(121, polar=True)
ax_polar = plt.subplot(122)
ax_line
# Initial plot setup
= ax_polar.plot([0, np.angle(xsd[animate_start, trial2plot])], [0, 1], 'k-o')[0]
hpol = ax_line.plot(EEG['times'][0], ispc, 'b')
hplo1, = ax_line.plot(EEG['times'][0], dwpli, 'r')
hplo2,
# Function to update the animation
def update(idx):
# Update angles
= np.angle(xsd[idx:idx + time_window_idx, trial2plot])
angles 2), np.tile([0, 1], len(angles)).reshape(2, -1))
hpol.set_data(np.tile(angles,
# Compute ICPS and dWPLI
= np.abs(np.mean(np.exp(1j * np.angle(xsd[idx:idx + time_window_idx, trial2plot])), axis=0))
ispc[idx]
= np.sum(xsdi[idx:idx + time_window_idx, trial2plot])
imagsum = np.sum(np.abs(xsdi[idx:idx + time_window_idx, trial2plot]))
imagsumW = np.sum(xsdi[idx:idx + time_window_idx, trial2plot]**2)
debiasfactor = (imagsum**2 - debiasfactor) / (imagsumW**2 - debiasfactor)
dwpli[idx]
# Update plots
'times'][0][:idx], ispc[:idx])
hplo1.set_data(EEG['times'][0][:idx], dwpli[:idx])
hplo2.set_data(EEG['times'][0][animate_start], EEG['times'][0][animate_stop + 1])
ax_line.set_xlim(EEG[-0.1, 1.1)
ax_line.set_ylim(f'{EEG["times"][0][idx]:.0f}-{EEG["times"][0][idx + time_window_idx]:.0f} ms')
ax_line.set_title(
return hpol, hplo1, hplo2
# Create the animation
= FuncAnimation(fig, update, frames=range(animate_start, animate_stop + 1), interval=200, blit=True)
ani
# Display the animation in the Jupyter notebook
HTML(ani.to_html5_video())
Figure 26.12
This figure is generated in the code below.
Figure 26.13
# Define inline functions for v-test and gv-test
def vtest(icpcmag, n, val):
return n * icpcmag * np.cos(val) * np.sqrt(2.0 / n)
def gvtest(icpcmag, n, val):
return n * (icpcmag * np.exp((-(val)**2) / (4.0 * np.pi / n)) * (np.sqrt(2.0 / n)))
=(10, 8))
plt.figure(figsize
# Number of data points
= np.arange(2, 101)
n
# Plot p-values for v-test and gv-test for different angles
= [np.pi/10, np.pi/3]
angles for i, angle in enumerate(angles):
= 1 - norm.cdf(vtest(0.3, n, angle))
p_vtest = 1 - norm.cdf(gvtest(0.3, n, angle))
p_gvtest
= plt.subplot(2, 2, i + 1)
ax ='v-test')
ax.plot(n, p_vtest, label'm', label='gv-test')
ax.plot(n, p_gvtest,
ax.legend()'Number of points')
ax.set_xlabel('P-value')
ax.set_ylabel(0, 100)
ax.set_xlim(0, 0.6)
ax.set_ylim(f'angle = pi/{np.pi/angle:.0f}')
ax.set_title(
# Plot p-values for different numbers of points on polar subplots
= np.linspace(-np.pi, np.pi, 50)
x = [15, 600]
n_values for i, n_val in enumerate(n_values):
= 1 - norm.cdf(vtest(0.3, n_val, x - 0))
p_vtest = 1 - norm.cdf(gvtest(0.3, n_val, x - 0))
p_gvtest
= plt.subplot(2, 2, i + 3, polar=True)
ax ='v-test')
ax.plot(x, p_vtest, label'm', label='gv-test')
ax.plot(x, p_gvtest, f'N={n_val}')
ax.set_title(
ax.legend()
plt.tight_layout()
plt.show()
# Simulate data for false positive rates
= 10000
numUsims = np.zeros((2, numUsims))
u
for i in range(numUsims):
# Make some noise
= np.random.rand(2, EEG['pnts'][0][0]) * 2 * np.pi - np.pi
fake_phase_data
# Compute ISPC
= np.abs(np.mean(np.exp(1j * (np.diff(fake_phase_data, axis=0)))))
ispc_mag = np.angle(np.mean(np.exp(1j * (np.diff(fake_phase_data, axis=0)))))
ispc_phs
# Compute statistics
0, i] = vtest(ispc_mag, EEG['pnts'][0][0], ispc_phs - 0)
u[1, i] = gvtest(ispc_mag, EEG['pnts'][0][0], ispc_phs - 0)
u[
# Plot histograms of u-values
= plt.subplots(1, 2, figsize=(10, 4))
fig, axs for i in range(2):
= np.histogram(u[i, :], bins=100)
y, x # Replace log10(y) with np.maximum(log10(y), 0) to avoid negative values
= np.log10(np.maximum(y, 1)) # Use 1 instead of 1e-10 to avoid negative bars
y_log -1], y_log, width=np.diff(x), align='edge', color='k')
axs[i].bar(x[:= 100 * np.sum((1 - norm.cdf(u[i, :])) < 0.05) / len(u[i, :])
false_pos_rate f'{false_pos_rate:.1f}% false positive')
axs[i].set_title(
plt.tight_layout()
plt.show()
# Create a matrix of p-values for different combinations of ISPC strength and number of data points
= np.arange(10, 301)
nrange = np.arange(0.05, 0.71, 0.01)
ispcrange = np.zeros((2, len(nrange), len(ispcrange)))
pvalmat
for ni, n_val in enumerate(nrange):
for mi, m_val in enumerate(ispcrange):
0, ni, mi] = 1 - norm.cdf(vtest(m_val, n_val, np.pi/5))
pvalmat[1, ni, mi] = 1 - norm.cdf(gvtest(m_val, n_val, np.pi/5))
pvalmat[
# Plotting the matrix of p-values
= plt.subplots(1, 2, figsize=(10, 5))
fig, axs for i, title in enumerate(['v-test', 'gv-test']):
= axs[i].imshow(pvalmat[i, :, :], extent=[ispcrange[0], ispcrange[-1], nrange[0], nrange[-1]], aspect='auto', origin='lower', cmap='viridis')
im 'ICPS strength')
axs[i].set_xlabel('N')
axs[i].set_ylabel(
axs[i].set_title(title)
plt.tight_layout() plt.show()